Panspermia

New study suggests we all might be children of alien organisms

 

Via: TNW

Astronomical Origins of Life Panspermia       Cosmic Womb Seeding Earth

Panspermia means “seeds everywhere,” and the concept represents the idea that life on Earth may have been seeded by biological lifeforms from outer space. This long-controversial idea recently received some experimental support from a new study out of Japan.

These extremes of life were tested utilizing the International Space Station to examine how microbes might live in the extreme conditions of space.

“The origin of life on Earth is the biggest mystery of human beings. Scientists can have totally different points of view on the matter. Some think that life is very rare and happened only once in the Universe, while others think that life can happen on every suitable planet. If panspermia is possible, life must exist much more often than we previously thought” Dr. Akihiko Yamagishi, researcher at Tokyo University of Pharmacy and Life Sciences, explains. - Video

These bacteria are really fly…

In 2018, Dr. Yamagishi and his team collected Deinococcal bacteria floating 12 km (7.5 miles) above the earth. These microorganisms are known to come together in balls as large as one millimeter (1/25 inch) across, protecting them from UV radiation.

This hardiness suggested to researchers that these tough bacteria might be able to sustain the rigors of space.

Back home, researchers rehydrated the bacteria, and tested the samples. The thinnest layers of bacteria had been utterly destroyed by the experience, having their genetic material completely fried by ultraviolet radiation. In 2015, NASA astronaut Scott Kelly affixed pellets of Deinococcus (stored as various-sized pellets inside aluminum wells of an aluminum plate) on exposure panels outside the International Space Station. These microbes were exposed to the harsh environment of space for periods of one, two, and three years before samples were returned to Earth.

Samples of half a millimeter to a millimeter in thickness showed significant damage from exposure to space. Most of the samples were killed by the loss of water and UV radiation.

All samples thicker than half a millimeter (1/50 inch) thick showed roughly four percent of microbes survived through their ordeal. As microbes on the outer layers of the samples perished, they created a barrier protecting the rest of the colony........

Calculations show a colony twice that thick (roughly the width of a dime) would protect microbes for up to eight years traveling in space — far more than enough time to travel from Mars to Earth.

One variation of the panspermia idea, lithopanspermia theory, suggests microbes may hide within the rocky confines of asteroids, protected from the often-damaging effects of radiation.

One of the great questions of Panspermia is this — once life develops on one planet, how does it travel to another world? Meteorite impacts could, occasionally, lift life-laden rocks into space. Some material from other worlds, including Mars, has been known to land on our own world. . . .Full Story By THE COSMIC COMPANION @ TNW

 

 

Oxford Professor claims aliens are breeding with humans to create a Super Race  

Meteor Remnants Could Be Alien Technology  

Did Nikola Tesla Speak with Extraterrestrials ?

Starseeds, the people who believe they’re aliens in human bodies?

Chippewa Sky Man - Native American Ancient Astronaut Legend

Starseeds, the people who believe they’re aliens in human bodies?